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Abstract

A novel approach to computing the entropy of classical Hamiltonian systems
with long-range interactions is presented. The one-particle distribution function
is explicitly given in closed form depending only on numerical constants
obtained from solutions of purely algebraic equations. Comparison of
microcanonical and canonical forms for the entropy shows that they are always
the same, thus implying that both ensembles are fully equivalent unless the
heat capacity is negative in some energy range. Our approach is illustrated
with the Hamiltonian mean field (HMF) and a mean-field model in two spatial
dimensions.

PACS numbers: 05.70.−a, 05.20.Dd, 05.90.+m

1. Introduction

In thermodynamics the study of systems with long-range interactions presents challenging
problems. This fact is well illustrated by the existence of quasi-stationary non-Gaussian states
(which become stationary in the N → ∞ limit), temperature jumps at critical temperatures,
negative heat capacity and inequivalence of microcanonical and canonical ensembles [1, 2].
Examples of systems with long-range forces are self gravitating systems [3], non-neutral
plasmas [4, 5] and some simplified models such as the Hamiltonian mean field (HMF) [6],
free electron laser [7] and plasma single-wave models [8]. An interaction potential is long
ranged if it decays for long distances as r−α with α < d, where d is the spatial dimension.

In order to understand how a negative heat capacity arises, let us consider an isolated
system of N particles with arbitrary masses interacting through their mutual gravitational
forces. For a stationary state of an isolated system in a three-dimensional space, the virial
theorem yields [9]

E = K + W = (α − 2)K, (1)
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where K and W are the kinetic and potential energies, respectively. For the gravitational case
α = 1 and hence E = −K , which results in a negative heat capacity for all energy values.
Other examples of negative heat capacity in systems with long-range interactions are discussed
by Lynden-Bell [10]. For 2 < α < 3, there is no negative heat capacity. Consequently, a
long-range force is not a sufficient condition for a negative heat capacity. For instance Barré
et al have shown that for the HMF model the microcanonical and canonical ensembles are
fully equivalent, and therefore the heat capacity is always positive [11].

For short-range interactions canonical and microcanonical ensembles are equivalent
[12]; this is not always the case for long-range interactions. The possibility for ensemble
inequivalence has provided a profusion of work on the subject over the last decade (see,
[13–25] and references therein). Microcanonical and canonical ensemble properties can be
determined from the entropy and the free energy, respectively. The free energy in the canonical
ensemble is the Legendre–Frenchel transform of the microcanonical entropy. The latter is
the inverse transform of the free energy provided that the entropy is strictly concave. This
condition is violated (for S is a non-concave function of the energy) in systems with negative
heat capacity. The explicit computation, when feasible, of either the entropy or the free energy
of long-range interacting systems is in many cases performed using large deviation techniques
or a generalized canonical ensemble, which are rather cumbersome [11, 20, 26].

In this paper, we present a simpler and straightforward approach to computing the entropy
for a class of classical Hamiltonian systems. We show that for a class of classical Hamiltonian
long-range interacting systems, the microcanonical entropy and the one-particle distribution
function can be obtained, after the determination of purely numerical constants, using an
approach based on the direct solution of the maximum entropy principle. Once the properties
of the system in the microcanonical ensemble are known, those in the canonical ensemble can
be inferred as discussed above.

The paper is structured as follows. In section 2 we present our approach to compute
equilibrium statistical mechanical properties of classical Hamiltonian systems with long-range
interactions. We also discuss some implications to ensemble inequivalence. We illustrate our
approach with two examples given in section 3: the HMF model and the two-dimensional
mean-field system of [27, 28]. We close the paper with some concluding remarks in section 4.

2. Statistical ensembles of long-range interacting systems

For long-range interacting systems starting from an arbitrary initial condition, it is observed that
its statistical state undergoes, in a short time, a violent relaxation into a quasi-stationary state
[1, 2, 4, 5, 9, 29]. Persistent collective oscillations have also been reported [30]. Quasi-
stationary states relax very slowly with a life-time diverging with the number N of particles,
into the true thermodynamical equilibrium, with a Gaussian distribution of velocities. A
satisfactory theory predicting the resulting quasi-stationary state from the initial distribution is
still lacking [17, 31, 32]. In this paper, we are only interested in the thermodynamical properties
of the system at the final stage of its evolution, after reaching the true thermodynamical
equilibrium.

Here we consider systems with the Hamiltonian of the form

H =
N∑

i=1

p2
i

2m
+

1

2N

N∑
i,j=1

v(ri − rj ), (2)

where v(ri − rj ) is the interparticle potential, and the 1/N factor in the second term on the
right-hand side was introduced using the Kac prescription [34] and is equivalent to a change in
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the unit of time. In this form, the energy is extensive though not necessarily additive. Consider
an ensemble formed by a large number of identical copies of the system, in mutual thermal
contact, and with an average energy E [35]. Each system is coupled to the thermal bath formed
by all the other (identical) systems in the ensemble. The state of each individual system is
specified by a point in the N-particle phase space, and the ensemble is hence represented
by the N-particle distribution function fN(r1, p1, . . . , rN, pN). The most probable state at
equilibrium corresponds to the maximum of the Gibbs entropy,

S = −
∫

fN ln fN dr1 . . . drN dp1 . . . dpN, (3)

satisfying the normalization and average energy constraints:∫
fN dr1 . . . drN dp1 . . . dpN = 1, (4)

∫
H(r1, p1, . . . , rN, pN)fN dr1 . . . drN dp1 . . . dpN = E. (5)

In equation (3), by choice of units, we set the Boltzmann constant equal to 1 for simplicity
of notation. It is important to stress that the total energy of the ensemble is fixed, but not the
energy of any given individual system. The average energy of a system in the ensemble is E.
This situation hence corresponds to the canonical ensemble. For long-range interactions in the
limit N → ∞, the equilibrium distribution function is fully factored (see [33] and references
therein):

fN(p1, . . . , pN, r1, . . . , rN, t) =
N∏

i=1

f (pi , ri , t), (6)

and the entropy in equation (3) assumes the form

S = −N

∫
f ln f dr dp, (7)

where f is the one-particle distribution function.
Any square integrable function u(r) on a finite domain can be expanded as a convergent

series using a basis of orthonormal functions {ϕk(r)} as [36]

u(r) =
M∑

k=1

ckϕk(r) + R(r), (8)

where the norm of the rest function R can be made arbitrarily small by increasing M. Divergent
potentials for r → 0 can be regularized by introducing a softening parameter ε such that
v(r) → v(r + e) (e is a vector with components ε). With these considerations, we can expand
v as

v(r − r′) ≈ 1

N

M∑
k=1

ak(r)bk(r
′). (9)

The approximation in equation (9) can be made as precise as needed. For some models in
the literature equation (9) is in fact exact for a finite small M [6, 27, 28]. We identify the
mean-field variables:

K = 1

N

N∑
i=1

p2
i

2m
, Ak = 1

N

N∑
i=1

ak(ri ), Bk = 1

N

N∑
i=1

bk(ri ). (10)
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The Hamiltonian is then written as

H = N

[
K +

M∑
k=1

AkBk

]
. (11)

From the factorization of the N-particle distribution function fN , the canonical equilibrium
distribution obtained by maximizing S in equation (3), with the normalization and energy
constraints in equations (4) and (5), is equivalent to maximizing the entropy as given by
equation (7), with the energy constraint,∫

f (p, r)

(
p2

2m
+

1

2
U(r)

)
dr dp = ε ≡ E

N
, (12)

and the normalization constraint,∫
f (p, r) dr dp = 1. (13)

In equation (12) the mean-field potential is given by

U(r) =
∫

f (p, r, t)v(r − r′) dp′ dr′. (14)

These expressions are those of an isolated system with fixed energy E as given by
equation (12), and therefore also describe the microcanonical ensemble for this same system.
As a consequence, both the canonical and microcanonical ensembles correspond to the same
extremum solution. They can still be not equivalent as the stability of the equilibrium states
is not necessarily the same, as we discuss in section 2.1. We now turn to the solution of the
extremum problem for the entropy.

Equating to zero the first variation of S subject to the constraints given in equations (12)
and (13) yields

− ln f − 1 − λ − βe(p, r) = 0, (15)

where λ and β are Lagrange multipliers and e(p, r) is the energy of a particle with momentum
p at position r:

e(p, r) = p2

2m
+ U(r). (16)

Equation (15) is a self-consistent equation for f , as the potential U(r) is a functional of f .
To solve this equation we substitute equations (9) and (14) into equation (15), and define
W = ln f :

W(r, p) = −β

M∑
k=1

ak(r)

∫
bk(r

′) exp[W(p′, r′)] dr′ dp′ + φ(p), (17)

with

φ(p) = −β
p2

2m
− λ − 1. (18)

This is a nonlinear integral equation of the Hammerstein type with a factored kernel for the
unknown function W . Its solution can be obtained analogously to the linear case [36], as we
proceed to show. We define the constants

σk =
∫

bk(r
′) exp[W(p′, r′)] dr′ dp′, (19)
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such that equation (17) is rewritten as

W(r, p) = −β

M∑
k=1

ak(r)σk + φ(p) (20)

or equivalently

f (r, p) = C exp

[
−β

(
M∑

k=1

ak(r)σk +
p2

2m

)]
, (21)

where C = exp(−λ − 1) is the normalization constant. Finally, we insert equation (20) into
the right-hand side of equation (19):

σk =
∫

exp

[
−β

M∑
l=1

al(r)σl + φ(p)

]
bk(r) dr dp. (22)

Performing the integration in the momenta one gets

σk = C

(
2mπ

β

)d/2 ∫
exp

[
−β

M∑
l=1

al(r)σl

]
bk(r) dr. (23)

Equation (23) is an algebraic equation for the unknown constants σk . It can be solved
analytically in some cases, as for the HMF model in section 3.1. If an analytical solution is
not feasible, equation (23) can be solved numerically using a standard method for algebraic
equations. Once the constants σk are known, the distribution function is given in closed form
by equation (21).

The Gibbs entropy is obtained by rewriting equation (23) using the definition of φ(p) and
the normalization constant C from equation (21),

σk =
∫

bk(r) exp

[
−β

M∑
k=1

ak(r)σk

]
dr ×

{∫
exp

[
−β

M∑
k=1

ak(r)σk

]
dr

}−1

= − 1

βαl

∂

∂σl

ln Q = Bk, (24)

where we used that for every k there is a unique l such that ak = αlbl (this is always the case
for a symmetric potential v(r − r′)) for αl constant, and

Q =
∫

exp

[
−β

M∑
k=1

ak(r)σk

]
dr. (25)

Finally, from equations (7), (21) and (24) we obtain

s ≡ S

N
= ln

∫
exp

[
−β

M∑
k=1

ak(r)Bk

]
dr + β

M∑
k=1

AkBk +
d

2
+

d

2
ln(2mπ/β). (26)

Once the values of the constants Bk are known and since K can be determined by usual means,
the internal energy E = H is obtained from equation (11) as a function of the Lagrange
multiplier β. The entropy as a function of the energy is then obtained in a parametric form. If
for a given value of E or β there is more than one solution for the entropy S in equation (26),
then only the maximal value corresponds to the true thermodynamical entropy at equilibrium.
The remaining solutions are associated with unstable or meta-stable states.
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2.1. Stability of the canonical ensemble

The only possibility for classical systems with the Hamiltonian (2) of having non-equivalent
microcanonical and canonical ensembles is the presence of a convex dip in the entropy in
some energy interval:

∂E/∂β > 0. (27)

Using the mean-field variables K,Ak and Bk , the energy per particle (ε = E/N) is then given
by

ε = K +
1

2

M∑
k=1

AkBk. (28)

From equations (21) and (24) we obtain

−∂K

∂β
= d

2β2
(29)

and

∂Ak

∂β
= Ak

M∑
k′=1

Ak′Bk′ −
M∑

k′=1

〈a(r)bk′(r)〉Ak′ , (30)

∂Bk

∂β
= Bk

M∑
k′=1

Ak′Bk′ −
M∑

k′=1

〈bk(r)ak′(r)〉Bk′ . (31)

In equation (29) d is the dimension of the physical space. By differentiation of the energy in
equation (28) and using equations (29)–(31) and from the symmetric properties of the potential
one has

∂ε

∂β
= − d

2β2
+

[
M∑

k=1

AkBk

]2

−
M∑

k,k′=1

Ak〈bk(r)ak′(r)〉Bk′ . (32)

From this expression it is easy to see why the presence of the kinetic energy term is important
in many situations to ensure ensemble equivalence, as discussed in [14].

Therefore, if the entropy is convex part in an energy interval E1 < E < E2, this same
interval is forbidden for the canonical ensemble, resulting in a first-order phase transition
with an energy jump in the canonical ensemble. As discussed in the previous section, those
microcanonical states with a negative heat capacity are also the extrema of the canonical
entropy, but with a different stability character. This type of result was observed in some
models of long-range forces [19, 27, 28, 37]. For classical Hamiltonian systems of form (2),
there is no other source of ensemble inequivalence in the present situation.

3. Applications

In this section, we illustrate our approach with two examples: the HMF model, and a
two-dimensional mean-field system displaying first- and second-order phase transitions, and
negative heat capacity.

6
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3.1. HMF model

Here we present a new derivation for the entropy of the HMF model using our approach in
section 2. The Hamiltonian for the model is given by [6]:

H =
N∑

i=1

p2
i

2
+

1

2N

N∑
i,j=1

[1 − cos(θi − θj )]. (33)

We define the mean-field variables

Mx(θ) = 1

N

N∑
i=1

cos(θi), My(θ) = 1

N

N∑
i=1

sin(θi) (34)

and

K = 1

N

N∑
i=1

p2
i

2
. (35)

Thus equation (33) can be written in the form

H = N
[
K − 1

2

(
M2

x + M2
y

)]
, (36)

where we dropped out a constant additive term. Without loss of generality, in determining
the equilibrium state, we consider the case with Mx = 0, which amounts to a choice of origin
for the angles. The canonical equilibrium is determined by solving equation (23) with the
identifications σ1 ≡ My ≡ A1 = −B1 and b1(θ) = −a1(θ) ≡ sin(θ), and σ2 = Mx = 0:

My = D

∫ 2π

0
eβMy sin(θ) sin(θ) dθ = 2πD I1(βMy), (37)

where In is the modified Bessel function of the first kind with index n,

D = (2π/β)1/2 exp(−λ − 1),

and λ is determined from the normalization condition:

e−λ−1
∫

f (p, θ) dp dθ = e−λ−1

(
2π

β

)1/2 ∫ 2π

0
eβMy sin(θ) dθ

= e−λ−1

(
2π

β

)1/2

2π I0(βMy) = 1. (38)

From equations (37) and (38) we finally obtain

My = I1(βMy)

I0(βMy)
, (39)

which is the result obtained in [6, 38], but derived in a somewhat simpler way, without resorting
to a saddle-point approximation or a Hubbard–Stratonovich transformation.

As shown in [11], both ensembles are fully equivalent for the HMF model. We retrieve
now explicitly this result. Equation (32) is written here as

∂ε

∂β
= − 1

2β2
+ M2

y

[
M2

y − 〈sin2 θ〉] . (40)

Considering that M2
y = 〈sin θ〉2, the second term on the right-hand side of equation (39) is

also negative, then

− 1

2β2
+ M4

y − 〈sin2 θ〉M2
y < 0,

implying a positive heat capacity for all energy values. Hence both canonical and
microcanonical ensembles are equivalent.
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3.2. Two-dimensional mean-field system

Here we consider a two-dimensional system in a torus with the Hamiltonian [27, 28]:

H = 1

2

N∑
i=1

(
p2

x,i + p2
y,i

)
+ V (x, y), (41)

V (x, y) = 1

2N

N∑
i,j=1

[2 + a − cos(xi − xj ) − cos(yi − yj ) − a cos(xi − xj ) cos(yi − yj )],

(42)

where xi, yi ∈ [0.2π) and pxi
and py,i are the momenta conjugate to xi and yi , respectively.

This system presents two or three phases depending on the value of the parameter a. For
small a it has two phases, with a first-order transition from a Homogeneous phase (HP) to
a single-cluster phase (SCP). For higher values of this parameter, it presents an intermediate
two-cluster phase (TCP), with first- and second-order transitions connecting it to the SCP
and HP phases, respectively. For an interval of values of a the system also presents, inside
the negative heat-capacity region, a temperature jump [27]. We show now how this can be
obtained straightforwardly within our approach.

The Hamiltonian can be written using the mean-field variables [28]:

a1 = −b1 = cos x, a2 = −b2 = sin x,

a3 = −b3 = cos y, a4 = −b4 = sin y,

a5 = −2

a
b5 = cos(x + y), a6 = −2

a
b6 = sin(x + y),

a7 = −2

a
b7 = cos(x − y), a8 = −2

a
b8 = sin(x − y).

(43)

Following [28], due to the symmetry of the Hamiltonian, choosing the origin of the variables
x and y and without loss of generality we have A1 = A3, A5 = A7 and A2 = A4 =
A6 = A8 = 0, where Ai are defined in equation (10). Thus we have at equilibrium

H = N [K + A1B1 + A5B5] . (44)

The algebraic system in equation (23) is here given by

B1 = − π

Q

∫ ∞

0
dy e−βB1 cos y{cos y I0(β[B1 + 2B5 cos y])

− I1(β[B1 + 2B5 cos y])}, (45)

B5 = πa

Q

∫ ∞

0
dy e−βB1 cos y cos y I1(β[B1 + 2B5 cos y]),

where

Q = 2π

∫ ∞

0
dy e−βB1 cos y cos y I0(β[B1 + 2B5 cos y]), (46)

and I0 and I1 are Bessel functions of the first kind.
In order to illustrate our approach, we consider the parameter value a = 2, where both

negative heat capacity and temperature jump occur. The solutions to equations (45) are
determined numerically using a globally convergent Broydn method [39], and are shown in
figure 1. The figure clearly shows a back-bending of the curves B1(β) and B5(β) corresponding
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 β
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0.8

1

B
1

(β)   and   B
5

(β)

Figure 1. Numerical solutions of equation (45). The curve with the highest value at β = 4 is the
function B1(β), and the one with lower value B5(β).
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1 1.5 2 2.5 3
E

2

3

4

5

6

7

S

Figure 2. Left panel: entropy S as a function of β. Near the phase transition there is more than on
solution for equation (23). The continuous lines correspond to the true (equilibrium) entropy and
the doted line to unstable or meta-stable states. Right panel: entropy as a function of energy per
particle E. The convex dip is slightly visible here.

to the negative specific energy region. In the left panel of figure 2 we show the entropy as
a function of the inverse temperature of β, and in the right panel the entropy as a function
of energy E, obtained using the prescription in section 2. The curve S(E) has a shallow
convex dip, but still visible in the figure. The left panel of figure 2 shows that in the energy
interval with a negative heat capacity the entropy has one global and two local maxima,
which are respectively stable and meta-stable states in the microcanonical ensemble. The
stable and meta-stable solution branches intersect transversely at β ≈ 2.548 as shown in
the enlarged graph of S(β) in figure 3, leading to a temperature jump in the microcanonical
ensemble. This temperature jump can only occur inside the negative heat-capacity region,
which is also the condition for the existence of meta-stable states. Correspondingly in the
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2.544 2.546 2.548 2.55 2.552 2.554 2.556

E

5.905

5.91

5.915

5.92

5.925

5.93

S

Figure 3. Graph of S(E) showing the crossing of two solution branches. The continuous line
corresponds to stable equilibrium states and the dotted line to unstable in meta-stable states.

canonical ensemble a first-order phase transition with an energy jump occurs, corresponding
to the negative heat-capacity region, thus hiding the temperature jump.

4. Concluding remarks

We presented a new approach to computing the entropy of a class of long-range interacting
systems by reducing the extremum principle for the entropy to the solution of a set of algebraic
equations for the equilibrium values of global variables. For classical Hamiltonian systems
with long-range interactions, our approach is simpler than large deviation techniques or the
saddle-point approximation. The one-particle distribution function is obtained in closed form,
depending on numerical constants which are solutions of purely algebraic equations (23). The
microcanonical entropy is a more fundamental function, since other thermodynamic potentials
can be obtained from it, though the opposite is not always true for long-range interacting
systems. Besides being a more simple calculation procedure for the determination of the
entropy, as illustrated by the HMF and two-dimensional systems in section 3, our approach
is well suited for discussed ensemble inequivalence in classical Hamiltonian systems. It
can also be used as a starting point for new approximate numerical methods. Its extension
to systems including discrete variables, as the Colson–Bonifacio [7] or the Blume–Emery–
Griffiths models [40], is straightforward.
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